MONTH PARTY

HMS3000

MANUAL HALL EFFECT MEASUREMENT SYSTEM

HIGHLIGHTS

- ▶ Compact Desktop Design
- ▶ Easy-to-Use
- ► Fast Measurement
- ▶ Several test modules

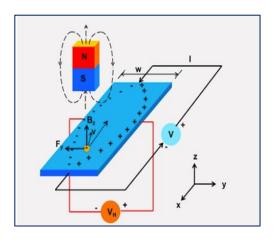
Specifications

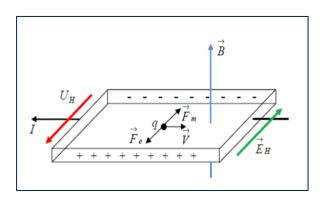
▶ 5x5 to 25x25mm

► Mobility: 1 to 10⁷ cm².V.⁻¹s⁻¹

▶ Magnetic fiel: 0.25T to 0.9T

► Temperature: 77K or 350K



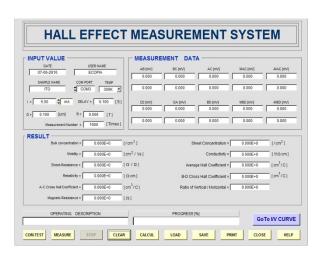


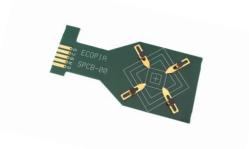
Hall Effect Measurement System is very useful for measuring Carrier Concentration, Mobility, Resistivity and Hall Coefficient that should be pre-checked in order to grasp the electrical specifications of semiconductor device. Therefore, it is essentially required system to understand the electrical characteristics of semiconductor device.

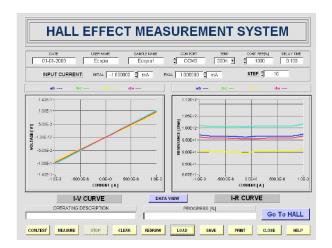
HMS series consist of constant current source, terminal conversion system by Van der Pauw technique, cold or hot temperature test system and magnetic flux density input system. So, it is well-established system that has all the things needed to Hall Effect Measurement System.

Hall effect Measurement Systems allow the ultra-fast characterization of several intrinsic parameters of conductive, semi-conductive materials. They use the Van Der Pauw method which is perfectly suited to thin film measurements and the Lorentz force in order to monitor around ten characteristics simultaneously under different environmental constraints.

Thanks to several module, the equipment permit to monitor the internal electrical parameters of a layer under different environmental constraints (variable temperature or variable magnetic field)


Technical specifications:


Sample size	5x5mm to 25x25mm		
Sample thickness max	2.5 mm		
Sample material	SI,SiGe,SiC,GaAs,InGaAs,InPGaN,AlZnO,FeCdTe,ZnO		
Magnetic field	From 0.25T to 0.9T		
Magnet resolution	+/- 0.03T		
Magnet type	Permanent/ Variable		
Magnet material	Neodym		
Magnet movement	Manual		
Temperature range	77K or 350K		
Temperature ramp	Yes		
SMU	Internal		
Current range	1nA to 20mA		
Sheet resistance range	$10^{ ext{-4}}$ to $10^{ ext{7}}\Omega$.cm		
Concentration range	10 ⁷ to 10 ²¹ cm ⁻³		
Mobility range	1 to 10 ⁷ cm ² .V ⁻¹ .s ⁻¹		
Software	Windows		
Data expot	.CSV		


Easy clip board SPCB:

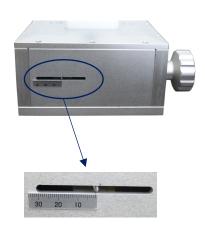
- Sample size: 5x5mm to 20x20mm
- Gold plated pogo pins for sample contact
- SPCB1: for thickness between 0 and 2 mm
- SPCB2: for thickness between 2 and 4.5 mm
- SPCB3: for thickness between 3 and 5.5 mm
- ⇒ Refer to the SPCB brochure

Soft calcul automatically all the electrical parameters of your sample and display the result. It is also possible to check the ohmic contact by trace I(V) curve

Fixed Magnetic field

Flux density	0.37T	0.55T	1T	
Magnet				
77K measurement	Yes	Yes	Room temp only	
Diameter	30 mm	50 mm	50 mm	
Pole gap	26 mm	26 mm	6,5 mm	
Max. spl thickness	13 mm	13 mm	3 mm	
Uniformity	+/- 1% over 20 mm diameter from the centre			
Stability	0.2% over one year			

► <u>Variable magnetic field :</u>


• EVM100R

Temperature: 350K onlyMagnetic field: 0.25T to 0.9T

• EVM100N2R:

Temperature: 77K – Magnetic field: 0.25 to 0.5T
Temperature: 350K – Magnetic field: 0.25T to 0.9T

By moving the pull-out-shelf, the gap between the two magnet is adjusted.

A table makes the link between the distance of the two gaps and the applied magnetic field

